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Abstract-In the context of linear elasticity, a stress singularity of the type K"r' (0 < 0) may exist
at sharp re-entrant corners, with an intensity K", The magnitude of the intensity fully characterizes
the stress state in the region of the corner. A critical value of K" may be appropriate as a failure
criterion in situations where the region around the corner dominated by the singular field is large
compared to intrinsic flaw sizes, inelastic zones, and process zone sizes, We determined K" for
notched mode I three-point flexure specimens using a combination of the Williams (Williams, M,
L (1952) Stress singularities resulting from various boundary conditions in angular corners of
plates in extension, Journal of Applied Mechanics 74, 526--528) asymptotic method, dimensional
considerations, and detailed finite dement analysis, We carried out an experimental study of the
feasibility of using a critical value of K" to correlate failure with a series of notched polymethyl
methacrylate (PMMA) three-point 'Ilexure specimens with notch angles of 60°, 90°, and 120°, Using
the measured failure loads and the [inite element solutions for K", we infer the critical notch stress
intensity K~, for sharp-notched PMMA. The data show that excellent failure correlation is obtained
through the use of the single parameter K~,. Furthermore, simple estimates of the size of the inelastic
zone for the notched PMMA specimens show it to be small relative to the singularity-dominated
zone. This supports the applicability of linear elastic notch mechanics (LENM), and the idea that
a critical value of K" can be used to correlate fracture initiation. II; 1997 Elsevier Science Ltd.

I. INTRODUCTION

The prediction of brittle fracture in cracked solids based on the stress intensity factor K of
linear elastic fracture mechanics is widely accepted, The suitability of using the single
parameter K to correlate fracture is a result of the universal nature of the singular stress
field near a crack tip as shown by Williams (1952), Williams further showed that a universal
singular stress field of the form cr,/i = KrA--'h/i(8) also exists in the region surrounding a
sharp notch, In fact, the case of a crack is really an extreme case of a re-entrant notch
where the included angle is zero, In the expression for the universal stress field, }. - 1 is the
order of the stress singularity. It, along with the angular function!,p(8), can be completely
determined by an asymptotic analysis of the stress state, Thus, they are not functions of
the particular geometry of the solid containing the notch or the specific far-field loading.
The stress intensity K is a function of the geometry of the solid and the far-field loading,
and thus for a given geometry and loading, K completely characterizes the stress state in a
region near the notch tip,

Since Williams' (1952) pioneering work, numerous studies have been undertaken to
determine the order of the stress singularity), - 1 for various notch geometries, These
include a large number of studies directed toward isotropic single and multiple-phase
wedge/notch geometries (see Dempsey and Sinclair (1981) for an extensive list ofreferences).
In addition, stress singularities in anisotropic media have been extensively studied using
analytical (Ting and Chou, 1981 ; Ting, 1986) and numerical (Sukumar and Kumosa, 1992;
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Gu and Belytchko, 1994) approaches in anisotropic elasticity. The motivation for the
studies in anisotropic elasticity has to a large degree been the study of singular stress fields
in composite materials. Despite the numerous studies directed toward obtaining}. - 1, very
few studies have focused on obtaining the corresponding stress intensity K for a specific
geometry. In fact, we know only of the works of Leicester (1973), Walsh (1974; 1976),
Gross and Mendelson (1972), Sinclair et al. (1984), Knesl (1991), and Dunn et al. (1996).

As in linear elastic fracture mechanics, it seems reasonable that given the univer:,al
singular stress field around the notch tip, it may be possible to correlate fracture initiation
at sharp notches with a critical value of the stress intensity. This critical value is a parameter
that describes fracture initiation under a very complicated stress state, namely the univer,al
singular stress state. Only a few studies have addressed the suitability of using a critical K
for a non-zero notch angle to correlate fracture initiation. Carpinteri (1987) performed
three-point flexure tests with notched PMMA bars and attempted to experimentally obtain
the connection between a critical stress intensity at various angles and structure sizes.
Although it may be possible to empirically correlate the critical stress intensity at various
angles, it may not be formally appropriate because even though for a given notch angle the
asymptotic stress field is universal, the universal field differs for different angles. Of course,
only for the limiting case of a crack is there a rigorous connection between the stress
intensity factor and the energy release rate of fracture mechanics. Thus a critical K failure
criterion is suitable only for fracture initiation. Additional support for an approach to
correlate fracture initiation based on the intensity of an elastic singularity other than that
for a crack is provided by the recent studies of Reedy (1990; 199]; 1993a,b) and Reedy
and Guess (1993; 1995; ]996). They correlated failure of adhesive-bonded butt tensile
joints with a generalized stress intensity at the free edge ofan interface corner between ela~.tic

and rigid layers. In their studies the order of the elastic singularity is about A- I = -1/3 as
compared to A-I = -1/2 for a crack.

The success of these approaches has motivated us to attempt to use a critical stress
intensity at reentrant notch corners to correlate failure of micromachined silicon structures
which often poses sharp corners due to the fabrication by crystallographic etching. In this
study, we present our initial efforts to this end. In Section 2 we apply the asymptotic
analysis of Williams (1952) to determine the order of the elastic singularity and the angular
dependence of the stress and displacement fields at a sharp notch. These fully determine
the stress state at the notch tip within an arbitrary constant, the notch stress intensity K n

,

which is a function of the geometry of the structure and the loading. In Section 3 we
obtain K" by detailed finite element calculations for notched three-point flexure specimens
proposed to obtain a critical value of K". We present an experimental study carried out on
notched polymethyl methacrylate (PMMA) three-point flexure specimens in Section 4. The
extraction of a critical K" is discussed in Section 5, along with a discussion of its suitability
to correlate fracture initiation at sharp notches, followed by concluding remarks in Section
6.

2. ASYMPTOTIC ANALYSIS OF SINGULAR FIELDS

Consider the notched body shown in Fig. ]. It is loaded by tractions on remote
boundaries and the surfaces e = ± IY. are traction free. In the following we redundantly, but
conveniently, refer to y as the notch angle where y is related to IY. by y/2 = n - rx. For
simplicity we assume linear isotropic material behavior. The asymptotic, possibly singular,
fields near the notch tip can be obtained using Williams (1952) eigenfunction expansion
method for both the plane and antiplane problems. For the plane problem, the appropriate
Airy stress function is:

(1)

where:
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Fig. I. Geometry of the corner considered in this study.
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f(8) = Al COS(A+ 1)8+ A2 sin(A + 1)8+A 3 cos(A-1)8+A4 sin(),-l)8. (2)

In the standard manner, the stresses can be obtained from ¢ as:

(J" = rA
-

I [(A+ l)f(8) +1"(8)]

(JOR = r).-1 A(A + I )j(8)

(JrR = - ri
-

I )[(8). (3)

Note that A > 0 for boundedness of the strain energy and A < I for singular fields. Imposing
traction-free boundary conditions on 8 = ± rx results in a system of four equations for the
five unknowns Ai and A. A nontrivial solution requires that the determinant of the coefficient
matrix vanish. Upon imposing this requirement, two equations result, one for symmetric
fields with respect to the x-axis (8 = 0), and one for antisymmetric fields. For the symmetric,
or mode I, fields:

). sin 2rx + sin 2),rx = O.

The order of the mode I singularity A is tabulated in Table 1 as a function of y.

(4)

Table l. Order of the corner stress singularity and coefficients of the nondimensional functionf(aih) in eqn (8)
for the notched three-point flexure specimens

I' (degrees) }. ('I C2 C, C4 Cs

0 0.5000 3.99812 -24.5978 84.3671 -129.951 77.8949
60 0.5122 4.45310 -27.9941 96.0504 -147.987 88.3623
90 0.5445 5.45245 - 35.6525 122.909 -189.630 112.681

120 0.6l57 7.89944 -55.2765 193.464 -300.322 177.660
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Once ;, is obtained from eqn (4), the coefficients Ai can be expressed in terms of a
single Ai' We normalize the system so that (Joo(e = 0) = K70- 1

• This allows us to write the
mode I singular stresses and displacements as :

(Jm = K7rA-'fm(e)

(Je = K7rA
-

1Ie(e)

u, = K70g,(e). (5)

In eqns (5) :x and f3 take on the values (x, y, z) in Cartesian coordinates and (r, e, z) in
cylindrical coordinates. The subscript a is not to be confused with the angle a. (Je is the von
Mises effective stress and (Jm is the mean stress. They are computed from (J,p in the standard
manner. A, !,p(e) , j~(e), Ie(e), and g,(e) are determined by the asymptotic analysis. A and
f,p(e) (a, f3 #- 3) are functions only of a, while fm(e), Ie(e) and g,(e) are functions of:x and
the elastic properties of the material.f33 (e) is a function of a and Poisson's ratio and differs
depending on whether plane strain or plane stress conditions are assumed. The stress
intensity K7 is a function of the specific geometry and loading. Its magnitude fully deter
mines the stress state at the notch tip for a given notch angle y (or :x).

3. FINITE ELEMENT SOLUTION FOR K": NOTCHED THREE-POINT FLEXURE
SPECIMENS

We focus on a specimen designed to determine a critical value of the mode I stress
intensity factor K7. We emphasize mode I because the singularity is much stronger than
that for mode II for geometries and loadings of practical interest and so mode I failure is
thought to dominate. For example, for a notch angle of y = 90°, A-I = -0.4555 and
- 0.0915 for modes I and II, respectively. The specimen studied here, a notched three-point
flexure specimen, is shown in Fig. 2, along with typical loading.

Dimensional considerations lead to the following form for K7 :

(6)

The order of the singularity). is determined from the asymptotic analysis and all other
parameters except the dimensionless factor f(a/h) are known for a specified geometry and

p

Fig. 2. Geometry of notched three-point flexure specimen used to extract the critical K;.
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Fig. 3. Finite element mesh used to determine K; for the notched three-point flexure specimen.

loading. Values of A for various notch angles 'Yare tabulated in Table 1. We performed
plane strain finite element calculations to determine the dimensionless factor f(alh), and to
obtain full-field solutions for the notched flexure specimens. A representative mesh is shown
in Fig. 3 for}' = 90°, along with the appropriate boundary conditions. Near the corner we
use a highly-refined mesh in order to accurately determine K1. The mesh shown in Fig. 3
contains 1308 8-node quadratic elements and 8032 degrees of freedom. Meshes for other
notch angles are similar.

We can determine K7 by correlating either calculated stresses or displacements with
the asymptotic formula of eqn (5) as is done in computational fracture mechanics. Because
they are more accurate than computed stresses, we use calculated nodal displacements to
determine K1. Specifically, we used the displacement component uyalong the notch flanks,
8 = ± Ct. K1 was determined from a least-squares fit (to find C) of:

(7)

where again A is determined from the asymptotic analysis. K1 was then computed from
K1 = C/9,(8 = Ct) where 9,(8 = Ct) is also determined from the asymptotic analysis. A plot
of uy(Ct) vs r is shown in Fig. 4 for the various values of alh for the}' = 90° specimen. The
results for specimens with other notch angles are similar. With K1 so determined, we
computedf(alh) from eqn (6). For the range of 0.05 ~ alh ~ 0.7,f(alh) can be fit by the
polynomial:

(8)

Results for the constants Ci are given in Table 1 for the range of notch angles studied.

4. NOTCHED THREE-POINT FLEXURE TESTS

We carried out a series of tests with notched three-point flexure specimens to determine
the suitability of using a critical value of K1 to correlate failure at sharp notches. Notched
flexure specimens (Fig. 2) were machined from polymethyl methacrylate (PMMA) with
dimensions of L = 76.2 mm, b = 12.7 mm, h = 17.8 mm. Specimens were machined with
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Fig. 4. Displacement u, along the notch flank e= 'X for the edge-notched specimens for )' = 90' at
various values of a/h with It = 17.8 mm.

three notch angles: }' = 60°, 90", and 120'. For each notch angle four notch depths were
used: a = 1.78,3.56,5.33, and 7.11 mm. These result in a/h ratios of 0.1, 0.2, 0.3, and 0.4,
respectively. The notch was carefully machined to yield a notch-tip radius less than 0.0254
mm. The notch tip radius was far less than 0.0254 mm for the}, = 90C and 120C specimens
and right at that value for}' 0= 60°. Optical microscopy revealed no evidence of crazing
ahead of the notch tip such as that observed in cracked PMMA (Williams, 1984).

We measured the elastic moduli and the uniaxial stress-strain curve of the PMMA
with a standard tensile test at a strain rate of 8.75 x 1O~4/s. The stress-strain response is
well-described by a combination of a Ramberg-Osgood (linear plus power-law hardening)
model from 0 ::( I: ::( 0.0625, and a perfectly-plastic model for 0.0625 ::( I: ::( 0.086 where
0.086 is the failure strain. The Ramberg-Osgood model is described by:

a,,( a (a)n)
I:=~-+X-

E a)" a)"'
(9)

Young's modulus is E = 2.3 GPa, and although we did not measure Poisson's ratio, a
detailed study by Ledbetter (1996) shows that it is 0.36. In addition to E, the fitting
parameters in eqn (9) are a)" = 51 MPa, X = 0.164, and n = 6.5.

We also measured the plane strain fracture toughness of the PMMA using cracked
three-point flexure specimens with the same dimensions given above, following the pro
cedures outlined in ASTM E-·399, the Standard Test Method for Plane-Strain Fracture
Toughness of Metallic Materials. The cracks were formed by sawing a thin notch to a depth
of about 2 mm, and then using a sharp razor blade to drive a crack to a nominal depth of
about 10 mm (a/h ~ 0.5). The flexure specimen was loaded at a crosshead displacement
rate of 0.1 mm/s. The average measured fracture toughness of four specimens is 1.02 MPa
.jm with a standard deviation of 0.12 MPa~ (standard deviation/average = 11.8%).
This scatter is in line with typical values for well-cracked specimens (Williams, 1984).

Flexure tests were performed with the notched specimens in an Instron servo-hydraulic
machine. The specimens were loaded at a crosshead displacement rate of 0.10 mm/s. The
results show linear load-displacement response, followed by brittle fracture. Examination
of the failed specimen indicates crack propagation along the symmetric plane ahead of the
notch tip. The failure surface is nearly perfectly smooth, exhibiting a mirror-like finish, It
contains very fine lines that run perpendicular to the notch front and show brilliant colors.
These lines appear to be the same as those reported in tests of cracked PMMA and have
been interpreted as interference effects of incident white light being reflected from layers of
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oriented molecules (Higuchi, 1958; Berry, 1961). Failure stresses for each test are tabulated
in Tables 2-5. The failure stress is defined as the stress 00° in eqn (6) as computed using the
measured failure loads. We also performed flexure tests on unnotched specimens and found
the average failure stress to be at = 124 MPa with a standard deviation of 20 MPa.

Table 2. Failure strength and critical K7 for the notched three-point flexure specimens with a = 1.78 mm (a/h = 0.1)

i' = 60 y = 90 i' = 120
131 K7,. 131 K7cr at K7"

(MPa) (MPa . mil'"") (MPa) (MPa'mll4555
) (MPa) (MPa . mil 1843)

16.97 0.569 19.63 0.887 24.85 2.031
17.41 0.584 19.63 0.887 25.17 2.057
17.35 0.582 19.31 0.873 25.01 2.044
17.41 0.584 25.17 2.057

Avg. 17.29 0.580 19.52 0.882 25.05 2.047
St. Dev. 0.21 0.007 0.18 0.008 0.15 0.012

Table 3. Failure strength and critical K7 for the notched three-point flexure specimens with a = 3.56 mm (a/h = 0.2)

i' = 60 y = 90 " = 120
131 K7,·. at K7'T a/ K7cr

(MPa) (MPa'm"48") (MPa) (MPa'mIl45S5) (MPa) (MPa . mil "4')

12.98 0.608 14.06 0.863 18.52 1.972
13.49 0.631 13.93 0.855 18.74 1.995
12.79 0.599 13.87 0.852 18.36 1.955
12.54 0.587 19.07 2.030

Avg. 12.95 0.606 13.95 0.857 18.67 1.988
St. Dev. 0.40 0.019 0.10 0.006 0.31 0.033

Table 4. Failure strength and critical K7 for the notched three-point flexure specimens with a = 5.33 mm (a/h = 0.3)

y = 60 y = 90' i' = 120
at K;('r 131 K7tr a f K7,r

(MPa) (MPa . mil 48") (MPa) (MPa . mil 4555) (MPa) (MPa . mil 3843)

8.40 0.508 11.27 0.884 13.30 1.786
8.99 0.544 11.52 0.904 14.80 1.989
8.74 0.529 11.65 0.913 14.73 1.978
8.99 0.544 14.80 1.989

Avg. 8.78 0.531 11.48 0.900 14.41 1.935
St. Dev. 0.28 0.017 0.19 0.015 0.74 0.100

Table 5. Failure strength and critical K7 for the notched three-point flexure specimens with a = 7.11 mm (a/h = 0.4)

y = 60° y = 90" y = 120
131 K7cr a/ K7a a/ K7,·,

(MPa) (MPa'mll487
') (MPa) (MPa . mil 4555) (MPa) (MPa'm" 1843

)

7.60 0.596 8.80 0.890 9.12 1.584
7.28 0.571 9.05 0.916 9.66 1.678
7.09 0.556 9.05 0.916 9.62 1.672
7.41 0.581 9.81 1.705

Avg. 7.35 0.576 8.97 0.907 9.55 1.660
St. Dev. 0.21 0.017 0.15 0.015 0.30 0.052
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5. DISCUSSION

From Tables 2-5 we see that for a given notch angle and notch depth, the measured
failure strengths are extremely repeatable. For all of the notch angle/depth combinations
the standard deviation divided by the average strength is only 2.2%. The repeatability is
slightly better for the y = 90° specimens than for the other two notch angles. Nevertheless,
the scatter for all notch angles is far less than that observed in plain strain fracture tests
with PMMA where scatter of ± 12% is typical (Williams, 1977; 1984). This is probably
because the small, but finite, notch angle and notch-tip radius between various specimens
is more consistent than that for artificially-induced cracks. Additionally, no craze zone is
observed ahead of the notch tip before fracture. For cracks, a craze zone, albeit small, is
often observed ahead of the crack tip (Marshall et al., 1973; Williams 1984).

If fracture can be correlai(~d with a critical value of K7, then we can use the specimen
dimensions along with the measured failure stress in eqn (6) to compute the critical value
of K7, i.e., K7a- If K7cr so obtained does not vary with changes in geometry (notch depth
in the present case) then it can be used to correlate failure. The average and standard
deviations of K7cr extracted in this manner are given in Table 6 for y = 0°, 60°, 90'\ and
1200

, respectively. The small variance of K7cr obtained from the specimens of four different
notch depths (Tables 2-5) strongly suggests that the single parameter K7cr can be used to
correlate fracture initiation at sharp notches. Although it is apparent that K7cr decreases
with notch angle, it is reminded that such a comparison is probably not strictly warranted
because although the single parameter K7cr alone describes the stress state at the notch tip,
it describes a different stress state for each notch angle. Indeed the units of K7cr differ for
each notch angle. Though, while we may be able to correlate K7cr for different notch angles
empirically, the theoretical basis for such a strict connection is lacking. Along these lines
we again mention the work of Carpinteri who attempted to correlate K7cr with notch angle.
Our results are in general agreement with his in that they show an increase in K7cr with y,
and furthermore that, the increase in K7cr is slight over 0 ~ K7cr < ~ 60".

That the single parameter K7 can correlate fracture initiation for a given notch angle
is further demonstrated in Fig. 5 where the failure strength computed using K7cr in eqns (6)
and (8) is plotted as a function of a/h. The predicted failure strength agrees well with
measurements for all three notch angles. This supports the validity of linear elastic notch
mechanics (LENM) with a notch fracture toughness criterion for fracture initiation.

In Figures 5a--e we have also shown the predicted failure stresses based on an analysis
that approximates the notch as a crack. In other words, we used K7cr andf(a/h) for y = OC
along with eqns (6) and (8), to predict the failure stress for the notched specimens with
y = 60°, 90°, and 120°. The predictions based on the crack solution underestimate the
failure stress in each case, and the error increases as y increases. For y = 60°, the difference
between the crack and notch solutions is about 20%. It is about 30% for y = 90° and 45%
for y = 120°. It is apparent that modeling the sharp notch as a crack can lead to substantial
error, particularly as the notch angle increases. However, an alternative approach to predict
fracture initiation might be to use the solution of eqn (6), along with f(a/h) for a crack.
This may be attractive since tabulated values off(a/h) for a crack exist for many geometril~s,

and the other terms in eqn (6) are obtained simply from dimensional analysis. In this case,

Table 6. Critical K1 for the notched three-point flexure
specimens as a function of notch angle. t

K 1cr Std. Dev.
rC) (MPa'm'-') (MPa'm'-')

0 OA07 0.048
60 0.573 0.031
90 0.886 0.023

120 1.908 0.162

t The fracture toughness reported here is K/c,/J2n where
Kia is the traditional plane strain fracture toughness. The
difference is due to our definition of K in eqn (5).





3882 M. L. Dunn et al.

10- 1

E
.§
--.
o
o
0\
II
~ 10-3

Q.....

10-5

0.1
K" (MPa·rnA)

Fig. 6. Kj-based estimate of plastic zone size at () = 90' ys. applied Kj for)' = 60. 90'. and 120.

f(a/h) for crack is less than that for the three notches by roughly 7%, 13%, and 28% for
y = 60 c

, 90", and 120", respectively.
We also used the linear elastic asymptotic solution to estimate the size and shape of a

plastic zone ahead of the notch tip at the measured failure load. We have not attempted to
consider the complicated phenomenology of the deformation of PMMA, but as a simple
estimate have assumed elastic-plastic behavior. Estimates of the craze zone could be
obtained in a similar manner as discussed by Williams (1984) in the context of cracks.
Taking a yield stress of (J, = 51 MPa and assuming yield initiates when the von Mises
effective stress equals (Jy, the size and shape of the plastic zone 1'(8) can be estimated as:

(liO)

The von Mises effective stress, based on the asymptotic elastic solution, is expressed as
(Jc = K7ri -1e(8) and is computed from the stress components in eqns (3) in the standard
manner. Note thatj,.(8) depends onf,r(fJ),faa(8), andfro(8) and differs depending on whether
plane stress or plane strain conditions are assumed. The asymptotic-based estimate of rp

for plane strain conditions at the point of maximum yielding (8 = 90°) is plotted in Fig. 6.
For the I = 90° specimens at an applied K7 of 0.886 MPa' m04555( = K7,,), rp ;::::: 0.13 mm.
This is much smaller than the region dominated by the singular field for the a/h = 0.1
notched bar which is ;::::: 2.5 mm as determined by the continuum finite element calculations.
For the a/h = 0.4 notched bar the region dominated by the singular field is ;::::: 0.8 mm which
is still substantially larger than r p • Again, this supports the use of a single parameter
description of the stress state at the notch tip and the use of a critical K7 as a failure criteria.

6. CONCLUSION

We determined the magnitude of the stress intensity K7 for notched mode I three-point
flexure specimens using a combination of Williams (1952) asymptotic method, dimensional
considerations, and detailed finite element analysis. Our corresponding measurements using
a series of notched polymethyl methacrylate (PMMA) three-point flexure specimens with
notch angles of 60°, 90°, and 1200 demonstrate the feasibility of using a critical value of
K7 to correlate fracture initiation. Using the measured failure loads and the finite element
solutions for K7, we inferred the critical K7 for sharp-notched PMMA. Furthermore, we
showed that elastic estimates of the plastic zone size for the notched PMMA specimens are
small relative to the singularity-dominated zone. This supports the applicability of linear
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elastic notch mechanics (LENM), and the contention that a critical value of K; can be used
to correlate fracture initiation from sharp notches.
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